15   Artículos

« Anterior     Página: 1 de 1     Siguiente »

 
en línea
Seung-Taek Kim and Hyo Jong Lee    
The proposed lightweight hourglass network can be applied as an alternative to existing methods that use the hourglass model as a backbone network.
Revista: Applied Sciences    Formato: Electrónico

 
en línea
Defeng He and Quande Wang    
Currently, analyzing the microscopic image of cotton fiber cross-section is the most accurate and effective way to measure its grade of maturity and then evaluate the quality of cotton samples. However, existing methods cannot extract the edge of the cro... ver más
Revista: Information    Formato: Electrónico

 
en línea
Shiyu Zhang, Jianguo Kong, Chao Chen, Yabin Li and Haijun Liang    
The rise of end-to-end (E2E) speech recognition technology in recent years has overturned the design pattern of cascading multiple subtasks in classical speech recognition and achieved direct mapping of speech input signals to text labels. In this study,... ver más
Revista: Aerospace    Formato: Electrónico

 
en línea
Zhongyu Sun, Wangping Zhou, Chen Ding and Min Xia    
Extracting buildings and roads from remote sensing images is very important in the area of land cover monitoring, which is of great help to urban planning. Currently, a deep learning method is used by the majority of building and road extraction algorith... ver más
Revista: ISPRS International Journal of Geo-Information    Formato: Electrónico

 
en línea
Lizhen Jia, Yanyan Xu and Dengfeng Ke    
Recent speech enhancement studies have mostly focused on completely separating noise from human voices. Due to the lack of specific structures for harmonic fitting in previous studies and the limitations of the traditional convolutional receptive field, ... ver más
Revista: Applied Sciences    Formato: Electrónico

 
en línea
Yundong Li, Xiaokun Wei and Hanlu Fan    
Monocular depth estimation (MDE), as one of the fundamental tasks of computer vision, plays important roles in downstream applications such as virtual reality, 3D reconstruction, and robotic navigation. Convolutional neural networks (CNN)-based methods g... ver más
Revista: Applied Sciences    Formato: Electrónico

 
en línea
Liang Han, Feng Liu and Kaifeng Chen    
Analog circuits play an important role in modern electronic systems. Aiming to accurately diagnose the faults of analog circuits, this paper proposes a novel variant of a convolutional neural network, namely, a multi-scale convolutional neural network wi... ver más
Revista: Algorithms    Formato: Electrónico

 
en línea
Kerang Cao, Jingyu Gao, Kwang-nam Choi and Lini Duan    
To classify the image material on the internet, the deep learning methodology, especially deep neural network, is the most optimal and costliest method of all computer vision methods. Convolutional neural networks (CNNs) learn a comprehensive feature rep... ver más
Revista: Future Internet    Formato: Electrónico

 
en línea
Hongyan Xu, Xiu Su, Yi Wang, Huaiyu Cai, Kerang Cui and Xiaodong Chen    
Concrete bridge crack detection is critical to guaranteeing transportation safety. The introduction of deep learning technology makes it possible to automatically and accurately detect cracks in bridges. We proposed an end-to-end crack detection model ba... ver más
Revista: Applied Sciences    Formato: Electrónico

 
en línea
Hayat Ullah and Arslan Munir    
The recognition of human activities using vision-based techniques has become a crucial research field in video analytics. Over the last decade, there have been numerous advancements in deep learning algorithms aimed at accurately detecting complex human ... ver más
Revista: Algorithms    Formato: Electrónico

 
en línea
Zhenxin Li, Yong Han, Zhenyu Xu, Zhihao Zhang, Zhixian Sun and Ge Chen    
Traffic forecasting has always been an important part of intelligent transportation systems. At present, spatiotemporal graph neural networks are widely used to capture spatiotemporal dependencies. However, most spatiotemporal graph neural networks use a... ver más
Revista: ISPRS International Journal of Geo-Information    Formato: Electrónico

 
en línea
Hao Wang and Nanfeng Xiao    
In order to better utilize and protect marine organisms, reliable underwater object detection methods need to be developed. Due to various influencing factors from complex and changeable underwater environments, the underwater object detection is full of... ver más
Revista: Applied Sciences    Formato: Electrónico

 
en línea
In this paper, we propose a semantic segmentation method based on superpixel region merging and convolutional neural network (CNN), referred to as regional merging neural network (RMNN). Image annotation has always been an important role in weakly-superv... ver más
Revista: Big Data and Cognitive Computing    Formato: Electrónico

 
en línea
Quanchun Jiang, Olamide Timothy Tawose, Songwen Pei, Xiaodong Chen, Linhua Jiang, Jiayao Wang and Dongfang Zhao    
In this paper, we propose a semantic segmentation method based on superpixel region merging and convolutional neural network (CNN), referred to as regional merging neural network (RMNN). Image annotation has always been an important role in weakly-superv... ver más
Revista: Big Data and Cognitive Computing    Formato: Electrónico

 
en línea
Wenji Yang and Xiaoying Qiu    
The damage caused by pests to crops results in reduced crop yield and compromised quality. Accurate and timely pest detection plays a crucial role in helping farmers to defend against and control pests. In this paper, a novel crop pest detection model na... ver más
Revista: Agriculture    Formato: Electrónico

« Anterior     Página: 1 de 1     Siguiente »