Inicio  /  Aerospace  /  Vol: 9 Par: 5 (2022)  /  Artículo
ARTÍCULO
TITULO

Assessment of Future Airframe and Propulsion Technologies on Sustainability of Next-Generation Mid-Range Aircraft

Stanislav Karpuk    
Rolf Radespiel and Ali Elham    

Resumen

The present work demonstrates the impact of future airframe and propulsion technologies on the sustainability of potential future medium-range commercial jets with design specifications similar to the Airbus A320-200. Advanced airframe and engine technologies include laminar flow control (LFC), active load alleviation, new materials and structures, and ultra-high bypass ratio turbofan engines. Two aircraft configurations with various design options were compared to determine potentially the best option for the mission profile, which tends to minimize the environmental impact. Each configuration was designed to balance the equivalent CO2 emissions and Direct Operating Costs. Technology sensitivity analyses were performed to investigate the significance of particular technology combinations and determine the ones that improve aircraft sustainability the most. All studies were performed at a conceptual design level using a multi-fidelity design approach to investigate the system-level effects of the technologies. The open-source aircraft design environment SUAVE was extended and integrated with other aircraft design and analysis tools to obtain all required correlations. The aircraft with advanced technologies showed an average reduction in equivalent CO2 emissions of 36% and a 23% reduction in DOC compared to the reference aircraft for a similar mission profile, although aircraft with future technologies may have a 43% higher production cost. The given results indicate that the application of technologies may be commercially successful if technologies achieve expected performance values, despite high development costs. Finally, the technology sensitivity analysis demonstrated the most significant influence of engine-related technologies and laminar flow control compared to other technologies considered in this research. Depending on design and integration complexities, engine technologies can be more achievable in the near future and can substantially reduce the overall emission level.

 Artículos similares

       
 
Joana Carneiro, Dália Loureiro, Marta Cabral and Dídia Covas    
This paper presents and demonstrates a novel scenario-building methodology that integrates contextual and future time uncertainty into the performance assessment of water distribution networks (WDNs). A three-step approach is proposed: (i) System context... ver más
Revista: Water

 
Lea Dasallas, Junghwan Lee, Sungphil Jang and Suhyung Jang    
Smart water cities (SWCs) use advanced technologies for efficient management and preservation of the urban water cycle, strengthening sustainability and improving the quality of life of the residents. This research aims to develop measurement and evaluat... ver más
Revista: Water

 
Grazia Leonzio    
Due to the increase of carbon dioxide emissions, a target for their reduction has been defined in the Paris Agreement for 2030. This topic is extremely important, and urgent actions are required so that the attention of the scientific community is mainly... ver más
Revista: Applied Sciences

 
Zhi Shan, Yuling Liang, Zhiwu Yu and Huihua Chen    
China has emerged as a prominent global player in the field of railways, with numerous railway construction projects spanning across diverse locations. Railway bridges, as a crucial component of railway construction, warrant significant attention. Meta-a... ver más
Revista: Applied Sciences

 
R. Gayathri, Jen-Yi Chang, Chia-Cheng Tsai and Tai-Wen Hsu    
An oscillating water column (OWC) is designed for the extraction and conversion of wave energy into usable electrical power, rather than being a standalone renewable energy source. This review paper presents a comprehensive analysis of the mathematical m... ver más