Inicio  /  Aerospace  /  Vol: 10 Par: 1 (2023)  /  Artículo
ARTÍCULO
TITULO

Modelling of Parachute Airborne Clusters Flight Dynamics and Parachute Interactions

Yanjun Li    
Congyuan Qu    
Jun Li and Li Yu    

Resumen

With the need for more condensed airborne clusters in a shortened time, there are increased risks of parachute collision and other interactions in the air. In this paper, the flight dynamics model of the parachute system is proposed for the whole deplaning airborne process, including parachute deployment, inflation, and the steady descent stages. The trajectories and velocities of the typical parachute airborne system are simulated, and the results are validated against the experimental measurement. To understand the potential interactions between parachutes, the flight dynamics of parachute airborne clusters, are then studied based on this model. The main parameters include the airborne altitudes, deplaning velocities, and airborne mass. The results show that the flight characteristics of parachutes are determined by the competence of the inertia effect and aerodynamic drags. The flight interactions of parachute clusters are most likely to occur at the moment of deployment, where the distance between parachutes is at a minimum. This critical distance increases with deplaning velocities and is insensitive to airborne altitudes. Adjusting the airborne order or using adaptive time periods by airborne mass can also avoid the potential interactions. The results of this paper can provide support for airborne strategies and help increase the safety and efficiency of airborne systems.

 Artículos similares