Inicio  /  Information  /  Vol: 11 Par: 6 (2020)  /  Artículo
ARTÍCULO
TITULO

Position Control of Cable-Driven Robotic Soft Arm Based on Deep Reinforcement Learning

Qiuxuan Wu    
Yueqin Gu    
Yancheng Li    
Botao Zhang    
Sergey A. Chepinskiy    
Jian Wang    
Anton A. Zhilenkov    
Aleksandr Y. Krasnov and Sergei Chernyi    

Resumen

The cable-driven soft arm is mostly made of soft material; it is difficult to control because of the material characteristics, so the traditional robot arm modeling and control methods cannot be directly applied to the soft robot arm. In this paper, we combine the data-driven modeling method with the reinforcement learning control method to realize the position control task of robotic soft arm, the method of control strategy based on deep Q learning. In order to solve slow convergence and unstable effect in the process of simulation and migration when deep reinforcement learning is applied to the actual robot control task, a control strategy learning method is designed, which is based on the experimental data, to establish a simulation environment for control strategy training, and then applied to the real environment. Finally, it is proved by experiment that the method can effectively complete the control of the soft robot arm, which has better robustness than the traditional method.

 Artículos similares

       
 
Qi Hong, Tianyi Zhou and Junde Qi    
Polishing force is one of the key process parameters in the polishing process of blisk blades, and its control accuracy will affect the surface quality and processing accuracy of the workpiece. The contact mechanism between the polishing surface and flap... ver más
Revista: Applied Sciences

 
Rong Li, Zhengliang Yang, Gaowei Yan, Long Jian, Guoqiang Li and Zhiqiang Li    
This paper uses the adaptive dynamic programming (ADP) method to achieve optimal trajectory tracking control for quadrotors. Relying on an established mathematical model of a quadrotor, the approximate optimal trajectory tracking control, which consists ... ver más
Revista: Aerospace

 
Bing Han, Zaiyu Duan, Zhouhua Peng and Yuhang Chen    
A fuzzy control improvement method is proposed with an integral line-of-sight (ILOS) guidance principle to meet the needs of autonomous navigation and high-precision control of ship trajectories. Firstly, a three-degree-of-freedom ship motion model was e... ver más

 
Kamal Rsetam, Yusai Zheng, Zhenwei Cao and Zhihong Man    
In this paper, an adaptive active disturbance rejection control is newly designed for precise angular steering position tracking of the uncertain and nonlinear SBW system with time delay communications. The proposed adaptive active disturbance rejection ... ver más

 
Duc Thien Tran, Tien Dat Nguyen, Minh Khiem Tran and Kyoung Kwan Ahn    
A control method for a cable-driven robot in a teleoperation system is proposed using the hardware-in-the-loop (HIL) simulation technique. The main components of the teleoperated robotic system are a haptic device, also called a delta robot, and a cable-... ver más
Revista: Applied Sciences