Inicio  /  Water  /  Vol: 10 Par: 8 (2018)  /  Artículo
ARTÍCULO
TITULO

Operating Cost Reduction of In-line Coagulation/Ultrafiltration Membrane Process Attributed to Coagulation Condition Optimization for Irreversible Fouling Control

Sung Soo Yoo    

Resumen

This study examined the optimum coagulation conditions for reducing irreversible fouling during the in-line coagulation/ultrafiltration (UF) membrane process and assessed the decrease in operating cost. The coagulation conditions that generated charge-neutralization, sweep-flocculation, and under-dosing mechanisms were obtained by a jar-test, and a pilot-scale in-line coagulation/UF membrane process was operated under the coagulation conditions. Charge-neutralization and sweep-flocculation mechanisms reduced irreversible fouling effectively, and the under-dosing mechanism was able to reduce irreversible fouling only when flocs of a certain size or larger were formed. This revealed that floc size was a more important factor in reducing irreversible fouling than floc structure, and once initial cake layers were created by flocs of a fixed size, the structure of formed cake layers had only a minor effect on irreversible fouling. Regarding reduction in operating cost, 0.5 mg/L and 3 h, which were necessary to produce an under-dosing mechanism, were deemed the optimum coagulant dosage and coagulant injection time, respectively, to reduce irreversible fouling. In order to analyze the operating cost reduction effect, a pilot plant was operated under optimum operating conditions, and the total operating cost was approximately 11.2% lower than without in-line coagulation.

 Artículos similares