Inicio  /  Cancers  /  Vol: 13 Par: 6 (2021)  /  Artículo
ARTÍCULO
TITULO

Ca2+ Signaling as the Untact Mode during Signaling in Metastatic Breast Cancer

Dongun Lee and Jeong Hee Hong    

Resumen

Intracellular Ca2+ signaling is a critical factor in breast cancer metastasis. In the proliferation stage, increases in intracellular Ca2+ concentration through voltage-dependent Ca2+ channels, P2Y2 channels, transient receptor potential (TRP) channels, store-operated Ca2+ channels (SOCCs), and IP3 receptors and a decrease in intracellular Ca2+ concentration through plasma membrane Ca2+ ATPases and secretory pathway Ca2+ ATPases (SPCA) activate breast cancer cell proliferation. TRPM7, SOCC, inositol trisphosphate receptor (IP3R), ryanodine receptor (RyR), and sarco-/endo-plasmic reticulum Ca2+-ATPase (SERCA) increase the expression of epithelial-to-mesenchymal transition (EMT)-related proteins; meanwhile, SPCA and the Na+/Ca2+ exchanger (NCX) control the activation of EMT-related proteins. Increased Ca2+ through TRPC1, TRPM7/8, P2X7, and SOCC enhances breast cancer cell migration. The stromal interaction molecule (STIM)-Orai complex, P2X7, and Ca2+ sensing receptors are involved in invadopodia. Various pharmacological agents for Ca2+ channels have been proposed against breast cancer and have provided potential strategies for treating metastatic processes.

PÁGINAS
pp. 0 - 0
REVISTAS SIMILARES

 Artículos similares