Inicio  /  Water  /  Vol: 10 Par: 6 (2018)  /  Artículo
ARTÍCULO
TITULO

Analysis of the Erosion Law of Karst Groundwater Using Hydrogeochemical Theory in Liulin Spring Area, North China

Xiuqing Zheng    
Kai Wang    
Fei Zhang    
Junfeng Chen    
Aimin Li and Yanping Chen    

Resumen

The comprehensive geological, hydrogeological and hydrogeochemical model of the Liulin karstic spring area in the eastern limb of the Ordos syncline was established by a combination of chemical thermodynamics, chemical kinetics and hydrogeology. The study area was divided into four zones based on the saturation indices of calcite, dolomite and gypsum, which were computed by the groundwater-chemical simulation software PHREEQC (a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations), with consideration of the geological and hydrogeological conditions and hydro-geochemical reactions. The weight and volume modulus of carbonate rocks and sulphate rocks in each zone were calculated by the method of correlation analysis to evaluate the dissolution law of karst groundwater. The results showed that in the zone I (saturation index of calcite ßc = 1) the dissolution of calcite was the major geochemical reaction, the weight modulus of calcite was higher than that of dolomite and gypsum, and the pore space generated by the dissolution of calcite was one order of magnitude larger than that of dolomite and gypsum. In zone II (saturation index of calcite ßc > 1 to saturation index of dolomite ßd = 1) the corrosion moduli were all smaller than that in zone I, the solubility of dolomite and gypsum increased, and calcite reached saturation. The space occupied by the calcite sediment was less than that dissolved by dolomite and gypsum. In zone III (saturation index of dolomite ßd > 1 to saturation index of gypsum ßg = 1), calcite and dolomite had reached saturation, accompanied by dedolomitization, and the amount of gypsum dissolution increased obviously. The conclusions indicate that the hydrogeochemical environment plays an important role in mineral dissolution.

 Artículos similares