ARTÍCULO
TITULO

A Numerical Implementation of a Nonlinear Mild Slope Model for Shoaling Directional Waves

Justin R. Davis    
Alex Sheremet    
Miao Tian and Saurabh Saxena    

Resumen

We describe the numerical implementation of a phase-resolving, nonlinear spectral model for shoaling directional waves over a mild sloping beach with straight parallel isobaths. The model accounts for non-linear, quadratic (triad) wave interactions as well as shoaling and refraction. The model integrates the coupled, nonlinear hyperbolic evolution equations that describe the transformation of the complex Fourier amplitudes of the deep-water directional wave field. Because typical directional wave spectra (observed or produced by deep-water forecasting models such as WAVEWATCH III?) do not contain phase information, individual realizations are generated by associating a random phase to each Fourier mode. The approach provides a natural extension to the deep-water spectral wave models, and has the advantage of fully describing the shoaling wave stochastic process, i.e., the evolution of both the variance and higher order statistics (phase correlations), the latter related to the evolution of the wave shape. The numerical implementation (a Fortran 95/2003 code) includes unidirectional (shore-perpendicular) propagation as a special case. Interoperability, both with post-processing programs (e.g., MATLAB/Tecplot 360) and future model coupling (e.g., offshore wave conditions from WAVEWATCH III?), is promoted by using NetCDF-4/HD5 formatted output files. The capabilities of the model are demonstrated using a JONSWAP spectrum with a cos2s directional distribution, for shore-perpendicular and oblique propagation. The simulated wave transformation under combined shoaling, refraction and nonlinear interactions shows the expected generation of directional harmonics of the spectral peak and of infragravity (frequency <0.05 Hz) waves. Current development efforts focus on analytic testing, development of additional physics modules essential for applications and validation with laboratory and field observations.

Palabras claves

 Artículos similares

       
 
Jianguo Zhao, Yang Yu, Hao Xu, Rongtang Zhang, Yuxi Ma and Jialiang Li    
Numerical seismic wave field simulation is essential for studying the dynamic responses in semi-infinite space, and the absorbing boundary setting is critical for simulation accuracy. This study addresses spherical waves incident from the free boundary b... ver más
Revista: Applied Sciences

 
Sergejus Lebedevas and Tomas Cepaitis    
The decarbonization problem of maritime transport and new restrictions on CO2 emissions (MARPOL Annex VI Chapter 4, COM (2021)562) have prompted the development and practical implementation of new decarbonization solutions. One of them, along with the us... ver más

 
Olivier Pantalé    
Finite element (FE) simulations have been effective in simulating thermomechanical forming processes, yet challenges arise when applying them to new materials due to nonlinear behaviors. To address this, machine learning techniques and artificial neural ... ver más
Revista: Algorithms

 
Olivier Pantalé    
Numerical methods based on finite element (FE) have proven their efficiency for many years in the thermomechanical simulation of forming processes. Nevertheless, the application of these methods to new materials requires the identification and implementa... ver más
Revista: Algorithms

 
Yibing Yu, Linlin Sun, Zhi Bian, Xiaojia Wang, Zhe Zhang, Chao Song, Weiping Hu and Xiao Chen    
A novel fatigue evolution model considering the effect of defect size and additive manufacturing building direction based on the theories of continuum damage mechanics and its numerical implementation in ABAQUS is proposed in this paper. First, the const... ver más
Revista: Aerospace