ARTÍCULO
TITULO

Pilot-Assisted OFDM for Underwater Acoustic Communication

Mohsin Murad    
Imran A. Tasadduq and Pablo Otero    

Resumen

Multicarrier techniques have made it possible to wirelessly transmit data at higher rates for underwater acoustic (UWA) communication. Several multicarrier techniques have been explored in the past for wireless data transmission. OFDM is known to fight off inter-symbol interference due to the orthogonality of its subcarriers. However, due to time variations, OFDM suffers from intercarrier interference. As the UWA channel is both a time and frequency variant, channel estimation becomes complex. We propose a pilot-based channel estimation technique and explore two equalizers for improving the error performance of an OFDM-based UWA system. Both the equalizers employ pilot subcarriers to estimate the UWA channel. One equalizer is a least squares (LS) equalizer and the other is a zero forcing (ZF) equalizer. Using computer simulations, it is observed that, for an acceptable error performance, the number of pilots should be one-fourth the number of subcarriers. Moreover, if the energy of the pilots is increased without changing the overall symbol energy, the error performance degrades. It is also noted that both the LS and ZF equalizers give an acceptable error performance with the ZF performing marginally better than the LS. Furthermore, the error performance of the proposed system is evaluated as a function of the transmitter-receiver distance and an acceptable error performance is observed even at 1250 m.

 Artículos similares