Redirigiendo al acceso original de articulo en 23 segundos...
Inicio  /  Climate  /  Vol: 5 Núm: 2 Par: June (2017)  /  Artículo
ARTÍCULO
TITULO

A Climate Change Assessment via Trend Estimation of Certain Climate Parameters with In Situ Measurement at the Coasts and Islands of Viet Nam

Vu Thanh Ca    

Resumen

This study presents results on an assessment of climate change in the nearshore and coastal areas of Viet Nam through an evaluation of trends of certain climatic parameters (air temperature, sea water temperature, sea level, and number of typhoons landed at the Vietnamese coast by year) using time series data of hydro-meteorological records at the coasts and islands of Viet Nam. The method used for the trend evaluation is the Mann?Kendall test ran at the 5% significance level and Spearman rank correlation coefficient. It was found that there is an extremely likely increasing trend of air temperature for almost all observation stations at the coasts and islands of Viet Nam. However, it was unable to confirm a general trend for sea surface water temperature; except for very few stations in semi-closed waters, there is no clear trend in annual average sea water temperature at a majority of stations. Additionally, there is an extremely likely rising trend of sea level at a majority of stations with reliable data, but the rates of increase are very different for different stations. The reasons for discrepancies in the trend of annual average sea water temperature and sea level at different stations are still not understood, but it seems that an assessment of the vertical movement of the ground surface at the stations is necessary to have an accurate assessment of the rate of sea level rise due to climate change and of the influence of general circulation in the East Viet Nam Sea on the trend of sea water temperature in that location. It is also found that there is a likely decreasing trend in the frequency of typhoons landed at the Vietnamese coast; however, this trend might not be due to climate change, but to climate variability.

 Artículos similares