Redirigiendo al acceso original de articulo en 20 segundos...
Inicio  /  Coatings  /  Vol: 8 Núm: 5 Par: May (2018)  /  Artículo
ARTÍCULO
TITULO

Design and Preparation of a Micro-Pyramid Structured Thin Film for Broadband Infrared Antireflection

Shaobo Ge    
Weiguo Liu    
Shun Zhou    
Shijie Li    
Xueping Sun    
Yuetian Huang    
Pengfei Yang    
Jin Zhang and Dabin Lin    

Resumen

A micro-pyramid structured thin film with a broad-band infrared antireflection property is designed and fabricated by using the single-point diamond turning (SPDT) technique and combined with nano-imprint lithography (NIL). A structure with dimensions of 10 μm pitch and 5 μm height is transferred from the copper mold to the silicon nitride optical film by using NIL and proportional inductively-coupled plasma (ICP) etching. Reflectance of the micro-optical surface is reduced below 1.0% over the infrared spectral range (800–2500 nm). A finite-difference-time-domain (FDTD) analysis indicates that this micro-structure can localize photons and enhance the absorption inside the micro-pyramid at long wavelengths. As described above, the micro-pyramid array has been integrated in an optical film successfully. Distinguishing from the traditional micro-optical components, considering the effect of refraction and diffraction, it is a valuable and flexible method to take account of the interference effect of optical film.

 Artículos similares