Redirigiendo al acceso original de articulo en 17 segundos...
Inicio  /  Aerospace  /  Vol: 8 Par: 7 (2021)  /  Artículo
ARTÍCULO
TITULO

Investigation of Reynolds Number Effects on Aerodynamic Characteristics of a Transport Aircraft

Yuanjing Wang    
Dawei Liu    
Xin Xu and Guoshuai Li    

Resumen

The scale difference between the real flight vehicle and the experimental model results in the Reynolds number effect, which makes it unreliable to predict the aerodynamic characteristics of flight vehicles by wind tunnel testing. To understand the mechanism of Reynolds number effects on the aerodynamic characteristics of the supercritical wing that is commonly used in transport aircraft in more detail, surface pressure wind tunnel tests of a transport aircraft reference model with a wing-body configuration were conducted in the European Transonic Windtunnel (ETW) at different Reynolds numbers. There are 495 pressure taps in total equipped on the surface of the test model with the Mach numbers ranging from 0.6 to 0.86 and Reynolds number varying from 3.3 × 106 to 35 × 106. In addition, an in-house developed CFD tool that has been validated by extensive experimental data was used to correct the wing deformation effect of the test model and achieve detailed flow structures. The results show that the Reynolds number has a significant impact on the boundary layer displacement thickness, surface pressure distribution, shock wave position, and overall aerodynamic force coefficients of the transport aircraft in the presence of shock wave and the induced boundary layer separation. The wind tunnel data combined with flow fields achieved from CFD show that the essence of the Reynolds number effect on the aerodynamic characteristics of transport aircraft is the difference of boundary layer development, shock wave/boundary layer interaction, and induced flow separation at different Reynolds numbers.

 Artículos similares