Redirigiendo al acceso original de articulo en 15 segundos...
Inicio  /  Aerospace  /  Vol: 8 Par: 11 (2021)  /  Artículo
ARTÍCULO
TITULO

The Control Algorithm and Experimentation of Coaxial Rotor Aircraft Trajectory Tracking Based on Backstepping Sliding Mode

Jiulong Xu    
Yongping Hao    
Junjie Wang and Lun Li    

Resumen

In view of the uncertainty of model parameters, the influence of external disturbances and sensor noise on the flight of coaxial rotor aircraft during autonomous flight, a robust backstepping sliding mode control algorithm for the position and attitude feedback control system is studied to solve the trajectory tracking problem of an aircraft in the case of unknown external interference. In this study, a non-linear dynamic model based on a disturbed coaxial rotor aircraft was established for an unknown flight. Then, a non-linear robust backstepping sliding mode controller was designed, which was divided into two sub-controllers: the attitude controller and the position controller of the coaxial rotor aircraft. In the controller, virtual control was introduced to construct the Lyapunov function to ensure the stability of each subsystem. The effectiveness of the proposed controller was verified through numerical simulation. Finally, the effectiveness of the backstepping sliding mode control algorithm was verified by flight experiments.

 Artículos similares