Redirigiendo al acceso original de articulo en 23 segundos...
ARTÍCULO
TITULO

A High Speed Architecture for Lifting-based 2-D Cohen-Daubechies-Feauveau (5,3) Discrete Wavelet Transform used in JPEG2000

Mohammad Rafi Lone    
Najeed- ud-Din    

Resumen

For real-time applications, efficient VLSI implementation of DWT is desired. In this paper, DWT architecture based on retiming for pipelining and unfolding is presented. The architecture is based on lifting one-dimensional Cohen-Daubechies-Feauveau (CDF) (5,3) wavelet filter, which is easily extended to 2-D implementation. It consists of low complexity and easily repeatable components. This paper is focused on the critical path minimization and throughput optimization at the same time. The architecture has been implemented on Virtex 6 Xilinx FPGA platform. The implementation results show that the critical path is minimized four to five times, while throughput is doubled, making the overall architecture approximately ten times faster when compared with the conventional lifting-based DWT architecture. Further with parallel implementation, the throughput has doubled without any increase in number of row buffers, implying that the architecture is memory efficient as well. The even and odd rows of the image are scanned in parallel fashion. To perform the 2-D DWT transform of an image of size 15 Megapixels, it takes 16.86 ms, which implies 59 images of that size can be processed in one second. This can be utilized for real-time video processing applications even for high resolution videos.

 Artículos similares