Redirigiendo al acceso original de articulo en 15 segundos...
ARTÍCULO
TITULO

Towing Performance of the Submerged Floating Offshore Wind Turbine under Different Wave Conditions

Conghuan Le    
Jianyu Ren    
Kai Wang    
Puyang Zhang and Hongyan Ding    

Resumen

One of the advantages of floating offshore wind turbines (FOWTs) is that they can be designed to be easily wet towed and installed to reduce the cost of offshore construction. In this paper, a fully coupled towing system numerical model is established for a novel 10 MW FOWT concept, namely, a submerged floating offshore wind turbine (SFOWT) to investigate the towing performance. Firstly, the numerical simulation is validated by comparison with model experiment results. Then, a series of numerical simulations are conducted to predict and compare the towing performance for a three-column SFOWT (TC-SFOWT) and a four-column SFOWT (FC-SFOWT) under different wave conditions. The results show that the two forms of SFOWT have good towing performance when the significant wave height is less than 5 m, which is the maximum wave height for the allowable towing condition. The FC-SFOWT shows relatively better performance in heave motion and roll motion, but the towing force is relatively larger compared with the TC-SFOWT under the same condition. When the significant wave height is 5 m, the maximum values of heave motion, pitch motion, and roll motion of the TC-SFOWT are 2.51 m, 2.14°, and 1.38°, respectively, while they are 2.25 m, 2.70°, and 1.21°, respectively, for the FC-SFOWT. Both the roll motion and the pitch motion are satisfied with the requirement that the roll and pitch are less than 5° during the towing process. The mean towing force of FC-SFOWT is 159.1 t at the significant wave height of 5 m, which is 52.8% larger than that of TC-SFOWT. The peak period mainly influences the frequency where the response peak appears in power spectra. The findings in this paper could provide some guidelines for wet towed operations.

 Artículos similares