Redirigiendo al acceso original de articulo en 19 segundos...
ARTÍCULO
TITULO

Internal Model Control-Based Observer for the Sideslip Angle of an Unmanned Surface Vehicle

Yanwei Huang    
Xiaocheng Shi    
Wenchao Huang and Shaobin Chen    

Resumen

Since the sideslip angle is often ignored or simplified in the process of path following of unmanned surface vehicle by using the line-of-sight (LOS) guidance law because of its fast change and the difficulty of measurement, an observer was proposed by internal model control (IMC) to quickly estimate the sideslip angle in the LOS guidance law. First, a prediction model was established for the tracking error, and a state space model for prediction errors was constructed as an internal model. With the introduction of the auxiliary variables, a new augmented system was set up for a state space model of the prediction errors. Then, the sideslip angle observer was designed by the theory of state feedback with the feature of the control law of a proportional-integral type. Theoretically, the stability of the system was proved based on the Lyapunov criteria. A simulation and experiment verified the effectiveness of the proposed sideslip angle observer in improving the path-following accuracy. The results show that the IMC-based observer introduces a proportional term of tracking error that is not considered by other observers, which is easier to implement and adjust, and has a faster response speed and a smaller steady-state error for the sideslip angle. In addition, the assumption of a small sideslip angle is not introduced in the design process, so the proposed observer provides an accurate estimation method for a large sideslip angle.

 Artículos similares