Redirigiendo al acceso original de articulo en 16 segundos...
ARTÍCULO
TITULO

Indoor Positioning Method Using WiFi RTT Based on LOS Identification and Range Calibration

Hongji Cao    
Yunjia Wang    
Jingxue Bi    
Shenglei Xu    
Minghao Si and Hongxia Qi    

Resumen

WiFi-based indoor positioning methods have attracted extensive attention due to the wide installation of WiFi access points (APs). Recently, the WiFi standard was modified and introduced into a new two-way approach based on round trip time (RTT) measurement, which brings some changes for indoor positioning based on WiFi. In this work, we propose a WiFi RTT positioning method based on line of sight (LOS) identification and range calibration. Given the complexity of the indoor environment, we design a non-line of sight (NLOS) and LOS identification algorithm based on scenario recognition. The positioning scenario is recognized to assist NLOS and LOS distances identification, and gaussian process regression (GPR) is utilized to construct the scenario recognition model. Meanwhile, the calibration model for LOS distance is presented to correct the measuring distance and the scenario information is utilized to constrain the estimated position. When there is a positioning request, the positioning scenario is identified with the scenario recognition model, and LOS measuring distance is obtained based on the recognized scenario. The LOS range measurements are first calibrated and then utilized to estimate the position of the smartphone. Finally, the positioning scenario is used to constrain the estimation location to avoid it beyond the scenario. The experimental results show that the positioning effect of the proposed method is far better than that of the Least Squares (LS) algorithm, achieving a mean error (ME) of 0.862 m and root-mean-square error (RMSE) of 0.989 m.

PÁGINAS
pp. 0 - 0
MATERIAS
INFRAESTRUCTURA
REVISTAS SIMILARES

 Artículos similares