Redirigiendo al acceso original de articulo en 24 segundos...
Inicio  /  Water  /  Vol: 10 Par: 5 (2018)  /  Artículo
ARTÍCULO
TITULO

Evaluation of Unified Algorithms for Remote Sensing of Chlorophyll-a and Turbidity in Lake Shinji and Lake Nakaumi of Japan and the Vaal Dam Reservoir of South Africa under Eutrophic and Ultra-Turbid Conditions

Yuji Sakuno    
Hiroshi Yajima    
Yumi Yoshioka    
Shogo Sugahara    
Mohamed A. M. Abd Elbasit    
Elhadi Adam and Johannes George Chirima    

Resumen

We evaluated unified algorithms for remote sensing of chlorophyll-a (Chla) and turbidity in eutrophic and ultra-turbid waters such as Japan?s Lake Shinji and Lake Nakaumi (SJNU) and the Vaal Dam Reservoir (VDR) in South Africa. To realize this objective, we used 38 remote sensing reflectance (Rrs), Chla and turbidity datasets collected in these waters between July 2016 and March 2017. As a result, we clarified the following items. As a unified Chla model, we obtained strong correlation (R2 = 0.7, RMSE = 2 mg m-3) using a two-band model (2-BM) and three-band model (3-BM), with Rrs(687)/Rrs(672) and [Rrs-1(687) - Rrs-1(672)] × Rrs(832). As a unified turbidity model, we obtained strong correlation (R2 = 0.7, RMSE = 260 NTU) using 2-BM and 3-BM, with Rrs(763)/Rrs(821) and Rrs(810) - [Rrs(730) + Rrs(770)]/2. When targeting the Sentinel-2 Multispectral Imager (MSI) frequency band, we focused on MSI Bands 4 and 5 (Rrs(740) and Rrs(775)) for the Chla algorithm. When optically separating SJNU and VDR data, it is effective to use the slopes of MSI Bands 3 and 4 (Rrs(560) and Rrs(665)) and the slopes of MSI Bands 7 and 9 (Rrs(775) and Rrs(865)).

 Artículos similares