Redirigiendo al acceso original de articulo en 23 segundos...
ARTÍCULO
TITULO

Simulation of Ice-Propeller Collision with Cohesive Element Method

Li Zhou    
Feng Wang    
Feng Diao    
Shifeng Ding    
Hao Yu and Yang Zhou    

Resumen

The existence of ice in ice-covered waters may cause damage to the propeller of polar ships, especially when massive ice floes are submerged around the hull. This paper aims to simulate an interaction process of a direct ice collision with a propeller based on the cohesive element method. A constitutive law is applied to model the ice material. The model of ice material is validated against model test results. The resulting impact loads acting on the contact surfaces and the corresponding ice block velocity are calculated in the time domain. The ice crushing, shearing and fracture failures are reproduced in the simulation. The convergence study with three meshing sizes of ice block is performed. To carry out a parametric study, five parameters are selected for analysis. These parameters are composed of rotational speed, direction of the propeller, initial speed of the ice block, contact position, and area between the ice and the propeller. The results show that the ice loads are affected by the five factors significantly. Ice loads tend to increase by decreasing the rotational speed, increasing the initial ice speed and the contact area, and changing the rotational direction from clockwise to counterclockwise. The effect of the contact position on the impact loads is relatively complex, depending on rotational speeds of the propeller.

 Artículos similares