Redirigiendo al acceso original de articulo en 21 segundos...
ARTÍCULO
TITULO

Impacts of Sea Surface Temperature Variability in the Indian Ocean on Drought Conditions over India during ENSO and IOD Events

Vaibhav Kumar    
Hone-Jay Chu and Abhishek Anand    

Resumen

The characteristics of terrestrial droughts are closely linked to simultaneous fluctuations in climatic factors, notably influenced by sea surface temperature (SST). This study explores the response of vegetation photosynthesis, indicated by solar-induced chlorophyll fluorescence (SIF), in India during the summer monsoon period (JJAS) under drought conditions. Notably, statistically significant associations between SST variations in the tropical Indian Ocean and land-based drought responses (precipitation, temperature, soil moisture, and SIF) were observed, which were attributed to atmospheric teleconnections. The positive phases of El Niño and the Indian Ocean Dipole (IOD) significantly impacted SST, triggering severe droughts in India in 2009 and 2015. The results revealed that positive SST anomalies weaken monsoon flow during the onset period, reducing moisture transmission to the Indian subcontinent. In 2009, the precipitation anomaly showed severe drought conditions (<-1.5) primarily in the northwest, central northeast, and west-central subregions, respectively, with soil moisture deficit and reduced photosynthetic activity (indicated by negative SIF anomalies) mirroring precipitation anomalies. In 2015, moderate to severe drought conditions affected regions primarily in the west-central and peninsular areas, with corresponding consistency in SIF anomalies and soil moisture deficits. These conditions led to decreased photosynthetic rates and negative SIF anomalies observed across India. The findings provide insights for predicting droughts and understanding ecosystem impacts across India amidst rapidly changing climate conditions in the Indian Ocean region.

 Artículos similares