Redirigiendo al acceso original de articulo en 22 segundos...
ARTÍCULO
TITULO

Dynamic Landing Control of a Quadrotor on the Wave Glider

Zhilin Lyu    
Weitao Ding    
Xiujun Sun    
Hongqiang Sang    
Ying Zhou    
Peiyuan Yu and Lijun Zheng    

Resumen

Aiming at the problems of difficult attitude stabilization, low landing accuracy, large external disturbance and slow dynamic response during the quadrotor dynamic landing on the wave glider, an improved series active disturbance rejection control method for the quadrotor is proposed. The quadrotor controller with inner-loop attitude angular velocity control and outer-loop position control based on the active disturbance rejection controller (ADRC) is designed by analyzing the dynamic model of the quadrotor. A tracking differentiator (TD) is adopted to track the input signal, and an expansive state observer (ESO) is used to estimate the total disturbance. Moreover, a nonlinear law state error feedback (NLSEF) is used to generate the virtual control volume of the system to realize the control of the quadrotor, and the stability of the cascaded self-turbulent controller is verified by Lyapunov?s theory. The simulation verifies that the proposed controller can accurately control the attitude and the position with better anti-interference capability and faster tracking speed. According to the final sea trial, a combination of an active disturbance rejection controller optimized with improved crow search algorithm (ICADRC) and April Tag visual reference system is used to land the quadrotor efficiently and successfully even under the surface float attitude uncertainty.

 Artículos similares