Redirigiendo al acceso original de articulo en 19 segundos...
Inicio  /  Applied Sciences  /  Vol: 9 Par: 15 (2019)  /  Artículo
ARTÍCULO
TITULO

Experimental Study on Energy Dissipation Performance and Failure Mode of Web-Connected Replaceable Energy Dissipation Link

Zhanzhong Yin    
Zhaosheng Huang    
Hui Zhang and Dazhe Feng    

Resumen

In the current design method of the eccentrically braced frame structure, the energy dissipation link and the frame beam are both designed as a whole. It is difficult to accurately assess the degree of damage through this method, and it is also hard to repair or replace the energy dissipation link after strong seismic events. Meanwhile, the overall design approach will increase the project?s overall cost. In order to solve the above mentioned shortcomings, the energy dissipation link is designed as an independent component, which is separated from the frame beam. In this paper, the energy dissipation link is bolted to the web of the frame beam. Both finite element simulation and test study of eight groups of energy dissipation links have been completed to study their mechanical behaviors, and the energy dissipation links have been studied in the aspects of length, cross section, and stiffener spacing. The mechanical behaviors include the energy dissipation behavior, bearing capacity, stiffness, and plastic rotation angle. The results indicate clearly that the hysteretic loop of links in the test and finite element analysis is relatively full. By comparing the experimental and finite element simulation data, it can be found that the general shape and trend of hysteretic loop, skeleton curve, and stiffness degradation curve are basically the same. The experiment data explicitly shows that the energy dissipation link of web-connected displays good ductility and stable energy dissipation ability. In addition, the replaceable links possess good rotational capacity when the minimum rotation angle of each specimen in the test is 0.16 rad. The results of the experiment show that the energy dissipation capacity of the link is mainly related to the section size and the stiffening rib spacing of the link. The energy dissipation ability and deformation ability of the link is poorer as the section size becomes larger; meanwhile, these abilities are reduced with the decrease of the stiffening spacing. The experiment result shows that the damage and excessive inelastic deformations are concentrated in the link to avoid any issues for the rest of the surrounding elements, and the links can be easily and inexpensively replaced after strong seismic events. The results are thought provoking, as they provide a theoretical basis for the further study of the eccentrically braced frame structure with replaceable links of web-connected. In future work, the author aims to carry out his studies through optimized design methodology based on the yielding criterion.

 Artículos similares