Redirigiendo al acceso original de articulo en 17 segundos...
Inicio  /  Water  /  Vol: 12 Par: 7 (2020)  /  Artículo
ARTÍCULO
TITULO

Efficient Urban Inundation Model for Live Flood Forecasting with Cellular Automata and Motion Cost Fields

Maikel Issermann    
Fi-John Chang and Haifeng Jia    

Resumen

The mitigation of societal damage from urban floods requires fast hydraulic models for emergency and planning purposes. The simplified mathematical model Cellular Automata is combined with Motion Cost fields, which score the difficulty to traverse an area, to the urban inundation model CAMC. It is implemented with simple matrix and logic operations to achieve high computational efficiency. The development concentrated on an application in dense urban built-up areas with numerous buildings. CAMC is efficient and flexible enough to be used in a ?live? urban flood warning system with current weather conditions. A case study is conducted in the German city of Wuppertal with about 12,000 buildings. The water depth estimation of every time step are visualized in a web-interface on the basis of the virtual globe NASA WorldWind. CAMC is compared with the shallow water equations-based model ANUGA. CAMC is approximatively 5 times faster than ANUGA at high spatial resolution and able to maintain numerical stability. The Nash-Sutcliffe coefficient (0.61), Root Mean Square Error (0.39 m) and Index of Agreement (0.65) indicate acceptable agreement for water depth estimation but identify different areas where important deviations occur. The estimation of velocity performs considerably less well (0.34 for Nash-Sutcliffe coefficient, 0.13 ms−1" role="presentation" style="position: relative;">-1-1 - 1 for Root Mean Square Error, and 0.39 for Index of Agreement) because CA ignores momentum conservation.

 Artículos similares