Resumen
As a result of their high mobility and reduced cost, Unmanned Aerial Vehicles (UAVs) have been found to be a promising tool in wireless networks. A UAV can perform the role of a base station as well as a mobile relay, connecting distant ground terminals. In this paper, we dispatch a UAV to a disaster area to help relay information for victims. We involve a bandwidth efficient technique called the Dual-Sampling (DS) method when planning the UAV flight trajectory, trying to maximize the data transmission throughput. We propose an iterative algorithm for solving this problem. The victim bandwidth scheduling and the UAV trajectory are alternately optimized in each iteration, meanwhile a power balance mechanism is implemented in the algorithm to ensure the proper functioning of the DS method. We compare the results of the DS-enabled scheme with two non-DS schemes, namely a fair bandwidth allocation scheme and a bandwidth contention scheme. The DS scheme outperforms the other two non-DS schemes regarding max-min average data rate among all the ground victims. Furthermore, we derive the theoretical optimal performance of the DS scheme for a given scenario, and find that the proposed approach can be regarded as a general method to solve this optimization problem. We also observe that the optimal UAV trajectory for the DS scheme is quite different from that of the non-DS bandwidth contention scheme.