Redirigiendo al acceso original de articulo en 24 segundos...
ARTÍCULO
TITULO

Numerical Simulation and Uncertainty Analysis of an Axial-Flow Waterjet Pump

Ji-Tao Qiu    
Chen-Jun Yang    
Xiao-Qian Dong    
Zong-Long Wang    
Wei Li and Francis Noblesse    

Resumen

Unsteady Reynolds-averaged Navier?Stokes simulations of an axial-flow pump for waterjet propulsion are carried out at model scale, and the numerical uncertainties are analyzed mainly according to the procedure recommended by the twenty-eighth International Towing Tank Conference. The two-layer realizable k-e model is adopted for turbulence closure, and the flow in viscous sub-layer is resolved. The governing equations are discretized with second-order schemes in space and first-order scheme in time and solved by the semi-implicit method for pressure-linked equations. The computational domain is discretized into block-structured hexahedral cells. For an axial-flow pump consisting of a seven-bladed rotor and a nine-bladed stator, the uncertainty analysis is conducted by using three sets of successively refined grids and time steps. In terms of the head and power over a range of flow rates, it is verified that the simulation uncertainty is less than 4.3%, and the validation is successfully achieved at an uncertainty level of 4.4% except for the lowest flow rate. Besides this, the simulated flow features around rotor blade tips and between the stator and rotor blade rows are investigated.

 Artículos similares