Redirigiendo al acceso original de articulo en 17 segundos...
Inicio  /  Applied Sciences  /  Vol: 12 Par: 23 (2022)  /  Artículo
ARTÍCULO
TITULO

Settlement and Stress Characteristics of the Ground in the Project of a Double-Line Tunnel Undercrossing an Airport Runway in a Sandy Cobble Region

Xuwei Zhao    
Jia Li    
Wei Liu and Wenge Qiu    

Resumen

The engineering technology of undercrossing an airport flight area is relatively mature; however, the use of shield tunnels crossing the operating airport flight area in high liquidity sandy cobble stratum has rarely been reported. To discuss the feasibility of a double-line shield tunnel undercrossing the airport flight area in a sandy cobble region. Based on the case of the Chengdu Metro Line 10 that undercrosses the Shuang-Liu Airport, which is located in sandy cobble region, the deformation and stress laws of airport runway pavement structures were investigated via a three-dimensional numerical model. Stratum displacement, ground settlement and pavement tensile stress under different tunnel depths were analysed. Then, the pavement tensile stress was taken as the safety evaluation index and the vulnerable area of the pavement structure was proposed. The results show that after excavation of the double-line tunnel, the maximum ground surface settlement occurred above the tunnel centreline and the ground settlement curves presented a V-type settlement trough instead of a W-type. The existence of a runway greatly limited the deformation of the surrounding soil; with increasing depth, the effect degree of the runway pavement on the soil settlement decreased. The most unfavourable region of the runway pavement structure under the influence of tunnel excavation was found. With increasing burial depth, the maximum settlement of the surface centre point decreased continuously. It is recommended that the tunnel burial depth not exceed 23.5 m in this project. According to the displacement and stress control limitation of the airport pavement, it can be judged that the shield construction method meets the structural stability requirements of the pavement. The calculated results provide a reference for the shield tunnel construction in the same geological condition areas.

 Artículos similares