Redirigiendo al acceso original de articulo en 21 segundos...
ARTÍCULO
TITULO

A Comprehensive Correlation Study of Structured Soils in Coastal Area of South China about Structural Characteristics

Chunxiu Lin    
Chang Xia    
Zhen Liu and Cuiying Zhou    

Resumen

Granite residual soil is a common engineering material, and its mechanical properties are of great importance to engineering safety. This kind of soil presents obvious structural characteristics, and many researchers have emphasized the significance of its structural features. According to previous experiments, from a macroscopic perspective, many researchers have investigated the structural relationship between undisturbed and remolded soils, but few studies have considered it in the mesoscopic aspect. Adopting DEM (a mesomechanical simulation method), we can study how the structure affects the mechanical process between undisturbed and remolded soil. Therefore, this paper combines DEM with laboratory tests to study the structural characteristic correlation between undisturbed and remolded soil. The results indicate that a weak cohesion effect exists in undisturbed soil, and the damage of weak cohesion elements accompanies the failure process. Weak cohesion elements in undisturbed soil cause inhomogeneities in deformation, stress state, and damage accumulation, which ultimately causes differences in strength curves. This paper explains the mechanism of the structural effect on mechanical evolution from a mesomechanical perspective. The DEM simulation method proposed in this paper can be applied to structured soils and better guide engineering practice.

 Artículos similares