Redirigiendo al acceso original de articulo en 16 segundos...
ARTÍCULO
TITULO

Performance of an Array of Oscillating Water Column Devices in Front of a Fixed Vertical Breakwater

Dimitrios N. Konispoliatis    

Resumen

The present study explores the performance of an array of cylindrical oscillating water column (OWC) devices, having a vertical symmetry axis, placed in front of a bottom seated, surface piercing, vertical breakwater. The main goal of this study is the investigation of a possible increase in the power efficiency of an OWC array by applying, in the vicinity of the array, a barrier to the wave propagation, aiming at amplifying the scattered and reflected waves originating from the presence of the devices and the wall. To cope with the set goal, a theoretical analysis is presented in the framework of linear potential theory, based on the solution of the proper diffraction, and pressure-radiation problems in the frequency domain, using the image theory, the matched axisymmetric eigenfunction expansion formulation, and the multiple scattering approach. Numerical results are presented and discussed in terms of the expected power absorption by the OWCs comparing different array?s characteristics i.e.,: (a) angle of incidence of the incoming wave train; (b) distances from the breakwater; and (c) geometric characteristics of the different arrangements. The results show that compared to the isolated OWC array (i.e., no presence of the wall), the power efficiency of the OWCs in front of a breakwater is amplified at specific frequency ranges.

 Artículos similares