Resumen
The use of Aluminum Gallium Nitride (AlGaN) as a power switching device material has been a promising topic of research in recent years. Along with Silicon Carbide (SiC) and Gallium Nitride (GaN), AlGaN is categorized as a Wideband Gap (WBG) material with intrinsic properties best suited for high power switching applications. This paper simulates and compares the thermal and electrical performance of AlGaN and Silicon (Si) MOSFETs, modeled in COMSOL Multiphysics. Comparisons between similar AlGaN/GaN and Si power modules are made in terms of heatsink requirements. The temperatures for the same operating voltage are found to be significantly lower for the AlGaN MOSFETs structures, compared to Si. The heatsink size for the AlGaN/GaN is found to be smaller compared to Si for the power modules.