Redirigiendo al acceso original de articulo en 23 segundos...
ARTÍCULO
TITULO

Improving Three-Dimensional Building Segmentation on Three-Dimensional City Models through Simulated Data and Contextual Analysis for Building Extraction

Frédéric Leroux    
Mickaël Germain    
Étienne Clabaut    
Yacine Bouroubi and Tony St-Pierre    

Resumen

Digital twins are increasingly gaining popularity as a method for simulating intricate natural and urban environments, with the precise segmentation of 3D objects playing an important role. This study focuses on developing a methodology for extracting buildings from textured 3D meshes, employing the PicassoNet-II semantic segmentation architecture. Additionally, we integrate Markov field-based contextual analysis for post-segmentation assessment and cluster analysis algorithms for building instantiation. Training a model to adapt to diverse datasets necessitates a substantial volume of annotated data, encompassing both real data from Quebec City, Canada, and simulated data from Evermotion and Unreal Engine. The experimental results indicate that incorporating simulated data improves segmentation accuracy, especially for under-represented features, and the DBSCAN algorithm proves effective in extracting isolated buildings. We further show that the model is highly sensible for the method of creating 3D meshes.

PÁGINAS
pp. 0 - 0
MATERIAS
INFRAESTRUCTURA
REVISTAS SIMILARES

 Artículos similares