Redirigiendo al acceso original de articulo en 20 segundos...
Inicio  /  Applied Sciences  /  Vol: 14 Par: 6 (2024)  /  Artículo
ARTÍCULO
TITULO

Optimizing Retention Bunkers in Copper Mines with Numerical Methods and Gradient Descent

Piotr Bortnowski    
Robert Król    
Natalia Suchorab-Matuszewska    
Maksymilian Ozdoba and Mateusz Szczerbakowicz    

Resumen

This study examines the optimization of ore receiving bins in underground copper mines, targeting the reduction of rapid wear and tear on bin components. The investigation identifies the primary wear contributors as the force exerted by the accumulated ore and the velocity at which ore particles move. By altering design and operational parameters, the objective is to decrease wear at key points such as transfer areas, thereby improving the efficiency and service life of retention bunkers. A Discrete Element Method (DEM) model of the bin was created and validated against actual mining conditions to study the impact of material flow on wear. The optimization approach used a constrained gradient descent algorithm to minimize factors like particle velocity and pressure force, while maintaining the efficiency of the bin. The findings provide valuable insights for the future design enhancements, potentially improving the operational performance of retention bunkers in the mining industry.

 Artículos similares