Redirigiendo al acceso original de articulo en 18 segundos...
Inicio  /  Applied Sciences  /  Vol: 10 Par: 23 (2020)  /  Artículo
ARTÍCULO
TITULO

A Novel Real-Time Virtual 3D Object Composition Method for 360° Video

Jaehyun Lee    
Sungjae Ha    
Philippe Gentet    
Leehwan Hwang    
Soonchul Kwon and Seunghyun Lee    

Resumen

As highly immersive virtual reality (VR) content, 360° video allows users to observe all viewpoints within the desired direction from the position where the video is recorded. In 360° video content, virtual objects are inserted into recorded real scenes to provide a higher sense of immersion. These techniques are called 3D composition. For a realistic 3D composition in a 360° video, it is important to obtain the internal (focal length) and external (position and rotation) parameters from a 360° camera. Traditional methods estimate the trajectory of a camera by extracting the feature point from the recorded video. However, incorrect results may occur owing to stitching errors from a 360° camera attached to several high-resolution cameras for the stitching process, and a large amount of time is spent on feature tracking owing to the high-resolution of the video. We propose a new method for pre-visualization and 3D composition that overcomes the limitations of existing methods. This system achieves real-time position tracking of the attached camera using a ZED camera and a stereo-vision sensor, and real-time stabilization using a Kalman filter. The proposed system shows high time efficiency and accurate 3D composition.

 Artículos similares